
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2021

A Reference Architecture for Rapid CubeSat Development A Reference Architecture for Rapid CubeSat Development

Sean R. Kelly

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Systems Engineering and Multidisciplinary Design Optimization Commons

Recommended Citation Recommended Citation
Kelly, Sean R., "A Reference Architecture for Rapid CubeSat Development" (2021). Theses and
Dissertations. 4948.
https://scholar.afit.edu/etd/4948

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4948&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/221?utm_source=scholar.afit.edu%2Fetd%2F4948&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4948?utm_source=scholar.afit.edu%2Fetd%2F4948&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

A REFERENCE ARCHITECTURE FOR RAPID CUBESAT
DEVELOPMENT

THESIS

Sean R. Kelly Capt, USAF

AFIT-ENV-MS-21-M-240

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENV-MS-21-M-240

A REFERENCE ARCHITECTURE FOR RAPID CUBESAT DEVELOPMENT

THESIS

Presented to the Faculty

Department of Systems Engineering and Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Sean R. Kelly
Capt, USAF

March 2021

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENV-MS-21-M-240

A REFERENCE ARCHITECTURE FOR RAPID CUBESAT DEVELOPMENT

THESIS

Sean R. Kelly
Capt, USAF

Committee Membership:

David R. Jacques, Ph.D.
Chair

Bradley J. Ayres, Ph.D.
Member

Thomas C. Ford, Ph.D.
Member

AFIT-ENV-MS-21-M-240

Abstract

The CubeSat class of nanosatellites has lowered the barrier of entry to space and

has rapidly gained popularity in recent years. The lower development cost, small

form factor, and reuse of commercial off-the-shelf components makes the CubeSat

form factor an ideal platform for University teams, where budget and development

time are extremely limited. To successfully design a CubeSat system in a rapid cycle

conducive to academic timelines, a Reference Architecture geared towards University

CubeSat development would be helpful. A Reference Architecture would speed up the

development process by providing a template, capturing previous work and lessons

learned from subject matter experts, providing a framework to focus on the CubeSat’s

design rather than the fine details of modeling software. A Reference Architecture

can also add functionality that student teams could use and improve over time, such

as pre-built analysis functions and a library of components to choose from. This

thesis presents a CubeSat Reference Architecture designed to meet these needs and

explores its unique features, diagrams, and custom libraries. The CubeSat Reference

Architecture was validated by relevant course instructors and is being used by a cohort

of students in the Spacecraft Design Sequence at AFIT.

iv

Acknowledgements

I would like to express my sincerest appreciation to my committee members for

their guidance through this process. I’d also like to thank my colleagues who helped

me test this model and gave me constructive feedback throughout.

Sean Kelly

v

Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . xi

List of Abbreviations . xii

I. Introduction . 1

1.1 General Issue . 1
1.2 Problem Statement . 3
1.3 Scope . 3
1.4 Research Objectives and Questions . 4
1.5 Assumptions and Limitations . 6
1.6 Approach . 6
1.7 Preview . 7

II. Literature Review . 8

2.1 Overview . 8
2.2 CubeSats . 8
2.3 Model Based Systems Engineering . 14
2.4 Reference Architectures . 20
2.5 Existing Work . 22
2.6 Validation Tools . 29
2.7 Document Generators . 30
2.8 Summary . 33

III. Methodology . 34

3.1 Overview . 34
3.2 Status Quo . 34
3.3 Developing the Reference Architecture . 38
3.4 Instructor Feedback . 39
3.5 Tool Validation . 40
3.6 Summary . 41

vi

Page

IV. Analysis and Results . 42

4.1 Overview . 42
4.2 Organization . 42
4.3 Guidance . 46
4.4 Requirements . 48
4.5 Structure . 55
4.6 Behavior . 61
4.7 Analysis . 66
4.8 Component Library . 74
4.9 Document Generators . 80
4.10 Validation of Model . 84
4.11 Summary . 85

V. Conclusion . 86

5.1 Overview . 86
5.2 Significance of Research . 86
5.3 Lessons Learned . 88
5.4 Future Work . 89
5.5 Final Thoughts . 90

Bibliography . 91

vii

List of Figures

Figure Page

1 CubeSat Launches . 9

2 1U CubeSat Example . 10

3 6U CubeSat Example . 10

4 CubeSat Sizes . 11

5 CubeSat Development by Institution . 12

6 CubeSat Companies . 13

7 Systems Engineering ”Vee” . 15

8 SysML Taxonomy . 17

9 Reference Architecture Purpose . 20

10 SUAS Component Library . 24

11 SUAS Organization . 24

12 CRM CubeSat Domain . 25

13 CRM Scope . 26

14 CRM Ground Segment . 26

15 CRM Space Segment . 27

16 CRM Stakeholders . 28

17 CONOPS Document Generator . 31

18 CONOPS Document Generator Output . 32

19 Containment Tree . 43

20 Model Organization . 44

21 Index . 45

22 Guidance . 46

viii

Figure Page

23 Modeling Rules . 47

24 Requirements Organization . 49

25 Source Documentation . 50

26 Design Constraints . 51

27 Stakeholder Analysis . 52

28 Stakeholder Matrix . 53

29 Mission Requirements . 54

30 Subsystem Requirements . 55

31 Mission Context bdd . 56

32 Mission Context ibd . 57

33 Physical Decomposition . 59

34 ADCS Template . 60

35 ADCS tailored . 60

36 State Machine . 61

37 Behavior Organization . 62

38 Mission Phases . 64

39 Mission Phase Descriptions . 65

40 Fault Management . 66

41 Analysis Organization . 68

42 Thermal Analysis . 70

43 Thermal Analysis Instance . 71

44 Thermal Analysis Run . 72

45 EPS Tests . 74

46 EPS Test Verification . 74

ix

Figure Page

47 Component Library . 76

48 Component Library - Structures . 76

49 Component Library - EPS . 77

50 Custom Value Type Library . 79

51 Document Generators . 81

52 Document Generator Title Page . 82

53 Manual Table Method . 83

54 Automatic Table Method . 84

x

List of Tables

Table Page

1 Design Outputs . 36

2 Typical CubeSat Development Process . 37

3 AFIT CubeSat Development Process . 38

xi

List of Abbreviations

Abbreviation Page

AFIT Air Force Institute of Technology . 2

MBSE Model-Based Systems Engineering . 2

STK Systems Tool-Kit . 4

VTL Apache’s Velocity Templating Language . 6

SSDL Space and Systems Development Laboratory 8

COTS Commercial Off The Shelf . 9

HET Hall Effect Thruster . 11

LEO Low Earth Orbit . 13

IOT Internet of Things . 13

INCOSE International Council on Systems Engineering 14

SysML Systems Modeling Language . 16

OOSEM Object-Oriented Systems Engineering Method 16

UML Unified Modeling Language . 16

bdd Block Definition Diagram . 17

ibd Internal Block Diagram . 17

DoD Department of Defense . 20

DoDAF Department of Defense Architecture Framework 20

SUAS Small Unmanned Aircraft System . 22

CRM CubeSat Reference Model . 25

OMG Object Management Group . 25

INCOSE International Council on Systems Engineers 25

CONOPS Concept of Operations . 28

xii

Abbreviation Page

ORD Operational Requirements Document . 28

CONOPS Concept of Operations . 30

MCD Mission Capabilities Document . 34

CONOPS Concept of Operations . 34

EPS Electrical Power System . 73

xiii

A REFERENCE ARCHITECTURE FOR RAPID CUBESAT DEVELOPMENT

I. Introduction

1.1 General Issue

Designing a spacecraft is a daunting and complex endeavor. Due to the nature

of space launch, most spacecraft only get one chance at success, and spacecraft can

take many years and millions of dollars to develop. As such, modeling, simulation,

and testing are vital for a space vehicle program’s success, and finding new ways to

mature technologies and flight test them can improve this process. The CubeSat-class

of nanosatellite can help by providing a cost-effective platform to mature technologies

or even perform operational missions as part of a CubeSat constellation. This thesis

attempts to assist design teams in rapidly developing and prototyping these CubeSat

designs.

Dr. Will Roper, the former assistant secretary of the Air Force for acquisition,

has emphasized the need for a faster acquisition cycle and for bolder ideas. During

the Air Force Association’s Air, Space and Cyber Conference in 2019, Dr. Roper said

“To become a more competitive acquisition system, the Air Force needs to be aware

of trends in technology. The world is changing. We have to change with it. The

key is to decide which technology will be successful and being able to act on those

trends with a system that is leaner, meaner and faster than our opponents.” [1] In

the space domain, CubeSats are that latest technological ”leaner and meaner” trend,

and the US Air Force and Space Force are embracing it. Additionally, CubeSats are

1

becoming increasingly popular in the commercial sector around the world, with the

number of CubeSat launches increasing year over year.

To support research in this CubeSat domain, the Air Force Institute of Technology

(AFIT) has a space vehicle design series of courses that guides students through the

Systems Engineering process using a satellite system. Starting with a set of mission

objectives, the design teams perform trade studies, generate requirements, design

the CubeSat system, and perform verification and validation of those requirements

with physical components over the span of three courses. This process mirrors the

real-world development process, but on a much faster timeline.

As design teams begin the development process of a CubeSat, there can be a

steep learning curve. Many engineers are not familiar with Model-Based Systems

Engineering (MBSE) tools or methodologies, and teams need to start their designs

from scratch. Reference Architectures exist in other domains to capture best practices

and provide a starting point for new systems, so this thesis attempts to develop

and demonstrate a Reference Architecture for the CubeSat domain. By providing

CubeSat designers with a template, including automatically generating tables and

documentation, they can focus more on the design and less on learning how to use

and organize the complicated model. Additionally, by providing a component library

to use and pre-built analysis tools using those components, they can build off previous

successful designs and rapidly simulate candidate solutions. Thorough documentation

and guidance included in the Reference Architecture will also increase standardization

amongst the team.

2

1.2 Problem Statement

There is a need to capture prior knowledge and accelerate learning to allow design

teams to rapidly develop, simulate, and test CubeSat designs and generate traditional

documentation, all from one MBSE tool.

1.3 Scope

This research was primarily intended to aid student design teams in a University

setting, and AFIT’s space vehicle design series of courses is an appropriate test-bed

for this. AFIT’s first space vehicle design course teaches and implements MBSE for

stakeholder analysis and requirements generation; however, the following courses do

not continue the use of the model for the actual design and implementation of the

CubeSat. The goal of this research is to create a useful Reference Architecture to aid

students in designing the physical satellite and tracing system requirements down to

the component level. This Reference Architecture should be useable even by users

not so familiar with MBSE, and it should assist with the system-level review process

including Critical Design Reviews, Test Readiness Reviews, etc. Even though AFIT

students will be the first users of this Reference Architecture, it is generic enough to

be used for any team wishing to develop a CubeSat program from the ground up. It

has all the functionality needed to develop requirements, design the physical system,

and perform basic simulations. It also features helpful resources like a component

library to assist with the physical design and document generators to create tailored

stakeholder documents from model elements. This CubeSat Reference Architecture

is intended to model the CubeSat system, with only minimal modeling for external

systems such as the ground stations. Ground station characteristics are necessary for

some communications analysis, so some basic ground station modeling is included,

but the ground station is not the system of interest. Other external systems, such as

3

the launch vehicle, are also included just to document interactions as needed, but are

not extensively modeled.

A Reference Architecture offers a baseline template for students to build from,

using lessons learned from past projects and creating the framework to streamline

the design process. A large effort of this research was focused on creating a generic

model with default component specifications throughout. This was intended to spark

ideas in the brainstorming process for students and aid in system analysis. Another

component of this research was creating basic analysis capabilities within the model,

allowing students to tweak component specifications to see how those changes affect

overall capabilities and requirements. Additionally, the model traces the analysis to

template requirements that future teams will tailor for their unique projects. This

allows for rapid simulations of key performance parameters or measures of effective-

ness for the system. Additional work is being done using this Reference Architecture

for more in-depth state analysis and integration with Systems Tool-Kit (STK) and

MATLAB, so it’s critical to form a robust baseline to build off of.

In order to test the validity of the tool, examples of this Reference Architecture

will first be demonstrated to the relevant course instructors to show how it could be

used by students. Feedback will be incorporated into the model before being used by

future classes. Additionally, a comprehensive how-to guide and modeling style guide

will be provided to students to walk through the process using a generic design.

1.4 Research Objectives and Questions

In an effort to improve this rapid-prototyping environment, this thesis demon-

strates the usage of a new Reference Architecture to guide CubeSat design teams

through the whole design process, hopefully speeding up the process and improving

the quality of designs in the end. The first usage of this Reference Architecture will

4

be the AFIT space vehicle design series, but the Reference Architecture should be

useful to any CubeSat design team as a starting template.

The research objectives are:

1. Create a practical and useful Reference Architecture for rapidly-prototyping

CubeSat designs.

2. Create easy-to-use document generators that use model elements to generate

traditional system level review documentation.

3. Present this Reference Architecture to AFIT instructors for feedback.

4. Lay the groundwork for future analysis work with STK and MATLAB integra-

tion for more comprehensive mission analysis using model elements.

The research questions are:

1. What are the tools necessary to perform mission modeling using model-based

systems engineering?

2. What viewpoints are most useful to common stakeholders?

3. How can useable documentation be generated from only model elements, keep-

ing the source of truth within the model?

4. What needs to be done in the model to allow for external tools (STK, MATLAB,

etc.) to interact with the MBSE tool?

5. Can cloud-based collaboration improve the MBSE design process for interdisci-

plinary teams?

5

1.5 Assumptions and Limitations

There are of course some limitations to this research. The first is limited standard-

ization amongst the CubeSat community. This thesis is based on how AFIT teaches

MBSE and how AFIT names subsystems, requirements, and documents. Other design

teams may have vastly different practices and conventions, limiting how useful the

Reference Architecture may be without tailoring. Second, this Reference Architecture

uses Cameo Systems Modeler, a tool that might not be available or desired by users.

Third, the Reference Architecture is sensitive to major organizational changes. If a

user wishes to make drastic changes away from the provided structure, some analysis

or document tools may need to be updated or they will not be useful. Finally, the

analysis portion of this Reference Architecture is only useful for initial verification

and validation of requirements, but does not replace more in-depth and robust anal-

ysis. This tool can help rapidly prototype and determine feasibility, but would not

suffice for final design approval.

1.6 Approach

This Reference Architecture will use No Magic’s Cameo Systems Modeler as the

primary modeling tool. Cameo Systems Modeler was chosen as the modeling tool

due to its common usage at AFIT and as it is being used more commonly in program

offices in the Air Force Life Cycle Management Center. Mathworks’ MATLAB will

be used for analysis as it is a commonly used program in academia and throughout

the Department of Defense, and it easily integrates with Cameo. Finally, Apache’s

Velocity Templating Language (VTL) will be used to generate documentation from

the model elements. These tools will be used to develop a Reference Architecture

that will be tested by students and then demonstrated to AFIT faculty for feedback.

6

Once the Reference Architecture is accepted by the faculty, it will be used by students

in the design course sequence and improved from then on.

1.7 Preview

The thesis follows a five-chapter format. Chapter I presented the general issue,

listed the research goals, provided the scope and general approach of this research,

and listed assumptions and limitations. Chapter II provides a background on the

current Reference Architectures in the CubeSat domain and how other Reference

Architectures are being used in other fields. Chapter III describes the methodology

used to address the problem statement and complete the research objectives. Chapter

IV details the resulting Reference Architecture and accompanying analytical tools.

Chapter V summarizes the contributions and limitations, and describes areas of future

research to further refine and evolve the Reference Architecture’s usefulness.

7

II. Literature Review

2.1 Overview

The purpose of this chapter is to highlight the current state of Reference Architec-

tures, including some recent work in the CubeSat domain. To understand the context,

this chapter will start by describing the CubeSat domain and the need for a CubeSat

Reference Architecture. This chapter will also define key terms and explore gaps in

the existing CubeSat models. Reference Architectures in the CubeSat domain are

still a relatively new endeavor, but Reference Architectures in similar domains will

be discussed to learn lessons from those models as well.

2.2 CubeSats

As launch service providers continue to offer more ride-sharing opportunities, ac-

cess to space has never been more available or affordable for small satellites. The

nanosatellite size (1-10 kg) has exploded in popularity over recent years [2], and

among that size class, the CubeSat has become the de facto standard, as shown in

Figure 1. A CubeSat is a sizing standard defined in 1999 by California Polytechnic

State University and Stanford University’s Space and Systems Development Labora-

tory (SSDL), with a basic ”1U” unit being 10 cm x 10 cm x 10 cm and a mass less

than 1.33 kg [3]. A 1U CubeSat is shown in Figure 2 for reference, and CubeSats are

defined by how many of these 1U cubes they contain. For example, a 3U CubeSat

is three 1U cubes together, and a 6U CubeSat is six 1U cubes combined, as shown

in Figure 3. Figure 4 shows the distribution of sizes, with 1U, 3U, and 6U being

the most commonly launched sizes [2]. This standardized sizing framework allows for

rapid prototyping with common chassis and common dispenser mechanisms, and this

drives down the cost of research and development for these CubeSats. CubeSats also

8

routinely use Commercial Off The Shelf (COTS) components to further drive down

development costs. To assist design teams, California Polytechnic Institute publishes

these CubeSat Design Specifications for 1U-3U CubeSats and for 6U CubeSats [3],

and NASA publishes a helpful developer’s guide called the ”CubeSat 101” [4].

Figure 1. CubeSat Launches

9

Figure 2. 1U CubeSat Example

Figure 3. 6U CubeSat Example

10

Figure 4. CubeSat Sizes

A primary benefit of the CubeSat standard is the lower cost of both the satellite

hardware and launch costs. The cost of failure for a CubeSat is orders of magnitude

lower than for a large, exquisite satellite, so CubeSats offer a proving ground for

maturing technologies and educating engineers and scientists. A traditional satellite

requires a dedicated launch vehicle, a distinct payload adapter, and millions to bil-

lions of dollars in research and development. By contrast, a CubeSat might only cost

$100,000 to $500,000 in research and development costs, and the launch cost can be

less than $1 Million [5]. Perhaps even more valuable than the reduced cost is the

ability to flight test articles in the space environment to iterate and mature technolo-

gies. Many materials, sensors, and other components have been matured through

CubeSats. For example, the Air Force Academy’s FalconSat-7 was designed to record

data on a polyimide photon sieve and determine its imaging performance before being

used in future operational satellites [6]. Their previous mission, FalconSAT-6, was

designed to improve Hall Effect Thruster (HET) technologies and low power commu-

11

nication options [7]. CubeSats are an ideal research platform, so it makes sense that

Universities launch a significant percentage of total CubeSats, as shown in Figure 5,

followed by companies seeking to capitalize on this lower-cost launch capability. Fig-

ure 6 shows the drastic increase in new companies developing CubeSats, highlighting

the increased relevance of this small satellite size [2].

Figure 5. CubeSat Development by Institution

12

Figure 6. CubeSat Companies

Furthermore, as resiliency in space becomes more important, CubeSats offer a

solution that is attracting research for military applications. As CubeSats are so small

and affordable, a mission could include many individual CubeSats as a system, or

”swarm,” to create a large constellation that drastically increases the overall reliability

and resiliency for the mission. In the private sector, a notable example is the Swarm

SpaceBee, a 0.25U CubeSat that is part of a 150-CubeSat constellation in Low Earth

Orbit (LEO), testing out global Internet of Things (IOT) tracking of ships, vehicles,

and other remote sensors [8].

Finally, Launch Service Providers are routinely offering ride-share opportunities

as secondary customers, making it much easier to launch these CubeSats in greater

numbers. SpaceX launched SSO-A in 2018 which carried 15 microsatellites (10-100

kg) and 49 CubeSats, which came from universities and other research institutes

from around the world including the previously mentioned FalconSat-6 [9]. This

13

CubeSat standard and the increasing demand for small satellites in orbit has lowered

the barrier to entry, allowing universities and small research teams to develop their

own space programs. In fact, AFIT has its own CubeSats in development, including

the ”Grissom” 6U bus, which will form the foundation for several distinct CubeSat

variations.

Due to the unique advantages that CubeSats offer for both the Department of De-

fense and for small university teams, AFIT has embraced the concept and is preparing

graduate students for future jobs in satellite acquisitions using CubeSats as the pri-

mary tool. Developing a CubeSat is a challenging task, especially for students without

industry experience, so the MBSE method is first taught to students before applying

it to CubeSat design.

2.3 Model Based Systems Engineering

MBSE is increasingly used to develop CubeSats, especially among university teams

such as at AFIT. MBSE is a Systems Engineering methodology that focuses on models

instead of the traditional document-based design approach. This section will explore

the MBSE method, language, and tools used to model CubeSats in this thesis. Before

exploring the advantages of MBSE though, a brief look at Systems Engineering in

general is warranted.

The International Council on Systems Engineering (INCOSE) defines Systems

Engineering as ”An interdisciplinary approach and means to enable the realization of

successful systems [10].” An important note is that attention must be devoted to the

entire life cycle of the system, or ”from cradle to grave.” The system, comprised of

a collection of hardware, software, people, facilities, and procedures [10], begins as

a theoretical concept in the eyes of users or stakeholders, and from that idea, needs

are defined, a system is developed, then used operationally, and finally retired or

14

disposed of. Systems Engineering is all about addressing this whole life cycle, and

there are many strategies or techniques to accomplish this task. Figure 7 shows the

traditional ”Vee” model, commonly taught and used for major Department of Defense

and NASA acquisitions [10]. Time proceeds from left to right when reading the Vee

process and starts at the top left by defining the stakeholder’s needs. From there,

the design process moves to system-level requirements and further down to a detailed

design with subsystem-level requirements. From there, the process begins integration

and qualification activities by assembling lower level subsystem components into their

parent systems and then testing these systems, otherwise known as verification. After

verification, the system is validated and the original stakeholders begin to use the

system.

Figure 7. Systems Engineering ”Vee”

Traditionally, the Systems Engineering process used a ”document-based” ap-

proach, where documents are the primary artifacts available to stakeholders [11].

These documents include requirement and traceability matrices, interface documents,

concept of operation documents, and other unique documents in a wide variety of for-

15

mats, such as Microsoft Excel sheets, Adobe PDF documents, Microsoft PowerPoint

presentations, and digital drawings. As systems become more complex, the tradi-

tional document-based approach becomes challenging to maintain. Each document is

manually generated, so file management and version control becomes problematic. It

is difficult to know for sure if something is the current version or if it has been subse-

quently updated but located on some other file system or storage drive. Furthermore,

any changes in one document, drawing, etc., must be also made in any other document

that uses that same item. This system is prone to errors, inconsistencies, and diffi-

culties maintaining an accurate representation of the entire system. MBSE provides

a solution to these increasingly relevant problems. In MBSE, a system model rep-

resents the system and any information needed for documents can be found within

this model. The model also makes it much easier to maintain consistency. If the

modeler updates a component or interface in one area, it will be updated throughout

the system wherever it appears. Traditionally, acquisition programs reviews will still

require paper documents, but the necessary information for those can still be found

within the system model during the transition from documents to system models.

MBSE requires a modeling language, a modeling method, and a modeling tool [11].

In this thesis, those are respectively the Systems Modeling Language (SysML), the

Object-Oriented Systems Engineering Method (OOSEM), and the Cameo Systems

Modeler tool.

SysML is a standard modeling language, which added systems engineering func-

tionality to the Unified Modeling Language (UML) that has been used extensively in

Software Engineering for decades [11]. SysML provides a language, or the definitions

and notations for nine different diagram types to describe a complex system, many

of which will be used in this Reference Architecture. SysML is expressed graphically

through those diagrams, listed in Figure 8, to show various system viewpoints. For

16

example, a Block Definition Diagram (bdd) expresses system structure, and an Activ-

ity Diagram can show specific system activities. Within ”blocks”, further detail can

be expressed on an Internal Block Diagram (ibd). Further explanations will accom-

pany their respective diagrams in Chapter IV, but for now, it’s important to know

that SysML provides the language and is built into the modeling tool, described later

in this chapter.

The modeling method is the specific methodology used to ensure important design

tasks have been accomplished and provides the general guidance, processes, or steps

for the system design. This paper will focus on OOSEM, but there are other popular

methods, such as the Weilkiens System Modeling (SYSMOD) method [12] and the

IBM Telelogic Harmony-SE method [13].

Figure 8. SysML Taxonomy

OOSEM uses SysML in a top-down, model-based approach that leverages object-

oriented concepts with traditional systems engineering methods to architect more

flexible and extensible systems that can evolve with technology and changing re-

quirements [14]. OOSEM was developed in part by Lockheed Martin Corporation as

a method to capture and analyze requirements of complex systems, integrate with

17

object-oriented software and hardware, and support system-level reuse and design

evolution [15].

The primary OOSEM activities are similar to those in the traditional ”Systems

Engineering Vee” as described previously and are accomplished in an iterative fashion

[16]. Similarly to the ”Vee” method, the traditional technical management processes

are still applied at each iteration.

The primary OOSEM steps are as follows [14]:

1. Analyze Stakeholder Needs: Capture the ”as-is” system and mission en-

terprise and identify gaps or issues. The ”as-is” depiction helps develop the

”to-be” system, and the gaps or issues can help drive mission requirements

for the new system. OOSEM frequently uses measures of effectiveness for the

primary mission objectives identified in this step.

2. Define System Requirements: Once the ”as-is” system is defined and pro-

duces Mission Requirements, the system is modeled as a ”black box” in a Mis-

sion Enterprise model. For example, instead of going deep into subsystem-level

detail on a CubeSat, the entire CubeSat will be a ”black box” that interacts with

ground stations, other satellites, and the environment. This ”black box” model

allows for system-level activity diagrams and use cases to show how the ”to-be”

system will support the mission enterprise. This step helps derive system-level

functional, performance, and interface requirements.

3. Define Logical Architecture: A ”logical” architecture is created that cap-

tures key functions in logical blocks, allowing for specific components to be

chosen later in place of the logical depiction.

4. Synthesize Candidate Allocated Architectures: From the logical architec-

ture, create potential physical instantiations using value properties and selected

18

components. Each component at this stage is then traced to system require-

ments in table or matrix form.

5. Optimize and Evaluate Alternatives: Trade studies or other analysis is

conducted at this step among the candidate architectures. Parametric diagrams

within the model or integrating other tools can simulate system performance

with the chosen components so alternative solutions can be compared.

6. Validate and Verify System: Once a candidate architecture has been chosen

from the alternatives, the system needs to be validated and verified to ensure

the requirements are being met and that stakeholder needs are satisfied. This

step uses inspection, demonstration, analysis, and test activities to validate and

verify the system.

Finally, the modeling tool is how the language and method get put together. The

modeling tool is a critical piece of software that builds an underlying model of the

system that can be used to display many different viewpoints or diagrams, depending

on what is needed. The system model in a modeling tool is comprised of model

elements and relationships between those elements, and from those, diagrams can

be generated. When the source element or relationship is modified or deleted, that

change gets carried out throughout the entire model, in any and all diagrams those

elements or relationships appeared. This effort utilized the Cameo Systems Modeler

tool from No Magic Inc., but the process is tool-agnostic. Other tools are available on

the market to accomplish the same goals with different user interfaces and feature sets.

The Cameo Systems Modeler tool will be shown in model screenshots throughout this

thesis.

19

2.4 Reference Architectures

Complex systems require detailed architectural planning early on in the design pro-

cess. The Department of Defense (DoD) attempted to manage the “Enterprise-level

Architectures” and “Solution Architectures” throughout the department by publish-

ing the Department of Defense Architecture Framework (DoDAF). DoDAF defined an

architecture as a “fundamental organization of a system embodied in its components,

their relationships to each other and to its environment, and the principles governing

its design and evolution over time [17].” This concept appears reasonable, but system

architects are not always available for every project that could benefit from a de-

tailed architecture, especially in an academic environment. Reference Architectures

help alleviate that problem by consolidating subject matter expertise and previous

relevant architectures into digestible models that system designers can benefit from

when creating a Solution Architecture [18]. The DoD saw the benefits of Reference

Architectures and put out a Reference Architecture Description in 2010, describing

them as “an authoritative source of information about a specific subject area that

guides and constrains the instantiations of multiple architectures and solutions [19],”

as shown in Figure 9.

Figure 9. Reference Architecture Purpose

Robert Cloutier suggests 2 key principles for Reference Architectures [18].

20

1. Principle 1: A Reference Architecture is an elaboration of company (enter-

prise) or consortium mission, vision, and strategy. . . . facilitates a shared under-

standing about the current architecture and the vision on the future direction.

2. Principle 2: A Reference Architecture is based on concepts proven in practice.

Preceding architectures can be mined for proven concepts.

Finally, Reference Architectures should have at least the following elements [18]:

1. Strategic Purpose: Goals, objectives, and a specific purpose or problem to

be addressed

2. Principles: High-level foundational statements of rules, culture, and values

that drive technical positions and patterns

3. Technical Positions: Technical guidance and standards that must be followed

by solution architectures (maybe data vocabulary/ data model)

4. Patterns (Templates): Generalized representations (e.g., Viewpoints, Views,

Diagrams, Products, Artifacts) showing relationships between elements speci-

fied in the Technical Position

5. Vocabulary: acronyms, terms, definitions

In summary, Reference Architectures can help systems engineers by providing

a template, developed from years of experience, to aid in the systems engineering

process. From the literature, it is clear that a Reference Architecture would be

particularly useful for teams designing a CubeSat.

21

2.5 Existing Work

There are many examples of Reference Architectures used in the commercial sec-

tor, but this section will focus on Reference Architectures that were clearly relevant

to this effort.

First, the Small Unmanned Aircraft System (SUAS) Reference Architecture de-

veloped at AFIT will be investigated. This is a relevant example as it fulfills the

same general goals as the CubeSat Reference Architecture; namely, that it is for use

in a design course series and is intended for students to use as a template for their

design efforts. This SUAS Reference Architecture was started before this CubeSat

effort and provides a useful baseline and inspiration, even if it is for a different do-

main. AFIT professors Dr. Jacques and Dr. Cox developed this architecture using

Cameo Systems Modeler to describe a generic SUAS, focused primarily on specific

product output for the SUAS specialization track [20]. The SUAS Reference Archi-

tecture contains a Basic Ground Station Model, a Basic Multi-Rotor System Model,

a Component Library, and sample build for a fixed-wing vehicle using the architec-

ture. The SUAS Reference Architecture is designed to allow students to easily build

to a design specification from COTS components in the Component Library and test

those designs using built-in parametric diagrams. These concepts will be applied to

the CubeSat Reference Architecture as well, adapted for use in the spacecraft design

course series.

Jacques and Cox focused on the SUAS culture of rapid prototyping, and the

Reference Architecture allows for designs to be developed at a much faster pace.

The common template and vision provided through the model helps interdisciplinary

teams design, build, and test SUAS systems with more time spent on producing a

quality product, and less time spent designing the entire model from scratch [20].

Jacques and Cox captured their own extensive SUAS experience into their Reference

22

Architecture, and the model will continue to be improved over time. Currently, it is

being improved to streamline the cumbersome DoD Cybersecurity Risk Assessment

process, using model elements to fill out required forms. The component library will

also continually evolve as COTS components change. Figure 10 shows a small section

of their Component Library, providing blocks with value properties and ports (not

displayed) to start from. Figure 11 shows the SUAS Reference Architecture’s top level

organization, which this Reference Architecture will be modeled after for consistency.

The component library, parametric diagrams, and general organization are useful in

the development of the CubeSat Reference Architecture, but the spacecraft design

course series has some unique differences that must be considered, such as instructor

preferences and differing model scopes.

23

Figure 10. SUAS Component Library

Figure 11. SUAS Organization

24

In the CubeSat domain, Kaslow and a group of Subject Matter Experts built

a CubeSat Reference Model (CRM) as part of a partnership between the Object

Management Group (OMG) and the International Council on Systems Engineers

(INCOSE). The CRM was intended to help CubeSat developers by providing logical,

reusable architecture elements at a high level [21]. Some sample diagrams are provided

in their interim status updates [21, 22, 23, 24, 25, 26], but the Cameo model itself

was not available to investigate. This CRM describes three levels of architectural

foundation that are necessary to capture the whole domain: the enterprise level,

the space and ground segments, and the space and ground subsystems. Figure 12

indicates the structure for the CubeSat domain as described by Kaslow et al.

Figure 12. CRM CubeSat Domain

Kaslow et al. used a block definition diagram to demonstrate the hierarchy of

elements within the domain. They depict the CubeSat Mission Enterprise as being

directly composed of a Space Segment, a Ground Segment, Ground Station Services,

25

and Transport, Launch, and Deploy Services. Furthermore, they identified what must

be developed by the CubeSat Project in greater detail, as shown by Figure 13.

Figure 13. CRM Scope

Kaslow et al. described all of the CubeSat subsystems and provided Block Defi-

nition Diagrams for the major views of a CubeSat, including each mission segment,

as shown in Figure 14 for the Ground Segment and Figure 15 for the Space Segment.

Figure 14. CRM Ground Segment

26

Figure 15. CRM Space Segment

Kaslow et al. determined that this logical architecture would provide guidance

for CubeSat developers to begin to formulate their own mission specific architectures,

knowing that their model did not have and could not have the specificity required

to support every type of mission. It provided a top-level guide to how a CubeSat

enterprise is organized, and some of the external stakeholders as well, as shown in

Fig 16. Their model is a starting point for mission specific teams to incorporate their

unique knowledge to formulate their own architectures.

27

Figure 16. CRM Stakeholders

After investigating the CRM status updates, however, the CubeSat Reference

Model was missing much of the subsystem-level details that was included in the SUAS

Reference Architecture. A thorough reference architecture in this domain ought to

include the high-level documentation and views from the CRM and the low-level

component library and functionality of the SUAS reference architecture.

Several other gaps exist that will be addressed in this thesis effort. First, the

CRM is not designed for outputting traditional documents for system level reviews.

There is no easy way to generate a Concept of Operations (CONOPS) document or

Operational Requirements Document (ORD), for example, and that is a desire for

an AFIT CubeSat Reference Architecture. Second, the CRM does not appear to

have a component library or a generic, intuitive system that can be easily adapted

by students new to MBSE. Finally, the CRM does not appear to have sufficiently

detailed value properties for the system to be useful for detailed mission analysis

using MATLAB and STK. Students in the AFIT course series must design down to

a lower level of detail with many value properties for each subsystem in order to

28

perform the required analysis and calculations. The CRM is quite useful though in

examining what subject matter experts deem important for a CubeSat model and for

their various subsystem internal block diagrams.

Another Reference Model that was investigated was the satellite model by Sanford

Friedenthal [27]. In his book, he walks through his version of a CubeSat model for the

”FireSat II” mission, also using the OOSEM methodology and Cameo Systems Mod-

eler. His book provides helpful diagrams and best practices and provided inspiration

for this Reference Architecture.

2.6 Validation Tools

When preparing to develop the CubeSat Reference Architecture, a Digital En-

gineering (DE) Validation Tool from SAIC was made available [28]. This free tool

was developed by SAIC and is provided free to the public as a set of validation rules

and customizations for Cameo. SAIC states ”Our free system model validation tool

guides modeling consistency to reduce errors, aid analyses, and improve quality.” This

appeared to be a useful addition to this CubeSat Reference Architecture, so it was

closely examined.

SysML provides a vast array of modeling options and styles, and the SAIC DE

tool aims to limit the language and standardize modeling techniques. By using this

tool, a team can ensure that each team member is using the same diagram types,

the same flow structures, the same definitions, etc., all of which align with the goals

of a Reference Architecture. However, the strict limits on SysML diagrams and

modeling techniques did not match how AFIT students learn or have practiced in

their preceding courses. In a commercial company with a specific modeling culture,

this DE toolset would be more useful to get engineers on the same page. Their

engineers may have come from different modeling backgrounds and it is important to

29

establish a common modeling style, but for new modelers who just learned the basics

of SysML, this tool was too restrictive and unnecessary in this author’s view. Students

using this model also all learned SysML from the same institution and already have

a relatively common modeling vocabulary and level of expertise.

While the DE toolset was not fully used in this edition of the CubeSat Reference

Architecture, the tool could be much more useful if AFIT develops its own style guide

and best practices. If there is an agreement on SysML usage as an institution, the

rule set can be modified and improved to incorporate these practices. However, the

rules as presented were too restrictive for the primary audience using this CubeSat

Reference Architecture.

2.7 Document Generators

One desired feature was the ability to automatically generate usable milestone

documentation entirely from model elements. Historically, students took screenshots

of diagrams and exported lists of requirements to Microsoft Excel to edit, manipulate,

and format for usage in formal documents. This has proven to be a problematic

process. For example, once a team member exports a subsystem requirement list

to Excel, the source of truth becomes that Excel sheet, requiring the team lead

to always compare the names, IDs, and details of requirements between different

documents. The CubeSat model previously used in AFIT’s first spacecraft design

course provided a starting point to determine which model elements were important

for the key documents in the early stages of a system design. This model featured

package diagrams with views and viewpoints pointing to model elements, and used

the ”Document Preview” plugin to pull model elements into an html file. Figure

17 shows one small piece of the document generator for the Concept of Operations

(CONOPS), and Figure 18 show what this plugin displayed as the output.

30

Figure 17. CONOPS Document Generator

31

Figure 18. CONOPS Document Generator Output

This was a useful start, as it used model elements to generate documentation, but

there were several issues with this method. First, this plugin has been unreliable.

Most students have trouble getting it to work at all, and the pdf functionality seems

to be broken in recent versions of Cameo. As shown in Figure 18, the numbering

and organization was quite frustrating to deal with. The document generator was

difficult to tweak, as it determined the document order based off view and viewpoint

IDs, not based on the layout of the diagram or any other easy way to reorganize or

add new elements. Figure 18 shows that the html file pulled text from the model, but

customization and formatting was poor. In practice, users had to just copy and paste

this html file into Microsoft Word and then spend a lot of time properly formatting

it so that it was presentable and properly formatted and polished. Any changes to

the model required all this work to be done over again unless the user wanted to

individually copy and paste text from the model for the document. Finally, this is

a plugin in beta, and seems to be unavailable for the latest service pack of Cameo.

32

These were useful though to determine the content and order of each document, but

this thesis will propose a different solution for generating documents.

2.8 Summary

This chapter discussed the CubeSat context and explained the necessary MBSE

and OOSEM concepts to understand the rest of this thesis. After the MBSE language,

method, and tools were explained, Reference Architectures were defined, providing a

template for the modeler to start from. Current Reference Architectures were then

examined, including an AFIT-developed SUAS architecture and two existing CubeSat

Reference Models. Gaps in these Reference Architectures were then identified that

this thesis will attempt to solve. Next, a Digital Engineering Validation Tool was

explored to determine its utility in this Reference Architecture. Finally, previous

document generators were discussed to highlight what this thesis aims to improve.

33

III. Methodology

3.1 Overview

Chapter III describes the methodology for answering the research questions posed

in Chapter I. The status quo will be described and design decisions will be discussed

for the creation of the Reference Architecture. The methodology for getting feedback

and validating the model will also be described.

3.2 Status Quo

As discussed in Chapter I, the Reference Architecture is intended to improve

CubeSat system designs by providing a starting point and a framework that guides

teams through the entire systems engineering process. The tool will have AFIT

students in mind with some course-specific features, but will also serve as a general

CubeSat Reference Architecture outside of AFIT. To understand the organization

and unique features of this Reference Architecture, it’s helpful to understand the

primary goals, inputs, and outputs of the course sequence.

At AFIT, the first course starts with teams given a Mission Capabilities Document

(MCD) for a fictional or real mission, which outlines the ”Mission Need Statement,”

”Operational Context,” and a set of required capabilities and design constraints.

From this set of inputs, students develop stakeholder concerns and needs, perform

trade studies, write a Concept of Operations (CONOPS), and finally develop a set

of mission requirements. These artifacts are carried into the next course, where

system level requirements are defined and a physical structure is designed. Finally,

in the third course, students take those system-level requirements and further define

subsystem-level requirements and develop test plans to verify those requirements.

These courses are intended to flow together, and this Reference Architecture will help

34

by providing the model framework to carry between and support all three courses.

Throughout the course sequence, there are also milestone reviews and stakeholder

documentation requirements to fulfill.

Students in this course sequence use the textbook Space Mission Engineering: The

New Space Mission Analysis and Design by Wertz, et al [5]. Wertz focuses mainly on

the requirements definition and validation portion of the Systems Engineering process,

so other more general Systems Engineering texts were consulted to supplement Wertz,

such as those by Friedenthal [29], Buede [10], and Maier and Rechtin [30].

The Space Vehicle design sequence, as taught by AFIT, has one primary input, the

MCD. From there, the following outputs are generated as part of the process. Each

report, trade study, review and artifact will have a place in the Reference Architecture.

35

Reports Trade Studies

Mission Capabilities Document Constellation Trade Study

Stakeholder Analysis Report Delta V Analysis

Concept of Operations Launch Vehicle Trade Study

Space Vehicle Requirements Document RF Link Budget Analysis

Operational Requirements Document Mass Budget

Subsystem Test Plans Power Budget

Subsystem Test Reports Cost Budget

Flight Readiness Review Report Schedule

Reviews Other Artifacts

Mission Concept Review Cameo System Model

Preliminary Design Review Digital Drawing

Critical Design Review STK Simulation

Test Readiness Review OV-1 Diagram

Flight Readiness Review

Table 1. Design Outputs

This list is not exhaustive, as differing missions or stakeholders may need different

outputs, so the Reference Architecture is designed to be flexible enough for unforeseen

variations. In addition to these formal documents and reviews, the model itself is

useful for describing the physical decomposition and interfaces of the system. The

model itself holds all the text, figures, tables, and trade studies that are used in the

documents as well. For example, the CONOPS document goes through mission and

fault phases, describing subsystem conditions, detailing activity diagrams for those

phases, and writing narratives to describe activities. These are all contained in model

36

elements, and the document just calls these elements in the appropriate format for

display.

Table 2 briefly outlines what the typical CubeSat development process looks like

[4], and Table 3 shows the process done in the short time frame of the design sequence

at AFIT. This CubeSat design process at AFIT is coinciding with normal academic

instruction and labs unrelated to the CubeSat project, so the timeframes do not cover

the entire nine months.

Step Project Phase Typical Timeframe

1 Concept Development 1-6 months

2 Securing Funding 1-12 months

3 Merit and Feasibility Review 1-2 months

4 CubeSat Design 1-6 months

5 Development and Submittal of Proposal 3-4 months

6 Selection and Manifesting 1-36 months

7 Mission Coordination 9-18 months

8 Licensing 4-5 months

9 Flight Specific Documentation Development 10-12 months

10 Ground Station Design, Development and Test 2-12 months

11 CubeSat Hardware Fabrication and Testing 2-12 months

12 Mission Readiness Review Half day

13 CubeSat to Dispenser Integration and Testing 1 day

14 Dispenser and Launch Vehicle Integration 1 day

15 Launch 1 day

16 Mission Operations Variable, up to 2 years

Table 2. Typical CubeSat Development Process

37

Step Project Phase Typical Timeframe

1 Stakeholder Analysis 2 weeks
2 Risk Identification 2 weeks
3 Trade Studies 2 weeks
4 Mission Phases 1 week
5 Fault Management 1 week
6 Concept of Operations 1 week
7 Mission Concept Review Half day
8 Space Vehicle Requirements Document 2 weeks
9 Mass and Power Budgets 1 week
10 Preliminary Design Review Half day
11 Physical Design 2 months
12 Critical Design Review Half day
13 Subsystem Test Plans 3 weeks
14 CubeSat Hardware Fabrication and Testing 3 months
15 Flight Readiness Review Half day

Table 3. AFIT CubeSat Development Process

3.3 Developing the Reference Architecture

As discussed in Chapter II, a similar effort has already been taking place with

Small Unmanned Aerial Systems at AFIT. Those efforts created a Reference Archi-

tecture for a similar design course sequence, so the first step was to explore that

Reference Architecture and get some ideas and any lessons learned from that ef-

fort. Of primary note was their component library, which allows the SUAS designer

to choose from commonly available components to rapidly prototype a new system.

Their organization was also well done, with top-level pages to show internal structures

and a package breakdown to separate Requirements, Structure, Behavior, and Anal-

ysis. Several of these organization practices will be expanded upon in this CubeSat

Reference Architecture.

While not explicitly stated as such, students going through this course sequence

learned the OOSEM approach to modeling systems, so that approach should be used

for this Reference Architecture as well. To bridge the gap between Wertz’ Firefly

38

model [5] and the OOSEM methodology, Friedenthal’s text [27] was used as a refer-

ence, as he also uses OOSEM in his approach. Looking at these models provided a

good foundation upon which to start building a Reference Architecture. Wertz had

detailed subsystem breakdowns and relevant calculations, Friedenthal explained the

OOSEM process and how it relates to CubeSat designs, and the SUAS model [20]

helped guide the organizational structure and capabilities of a Reference Architecture.

As this tool is meant to encourage new designs and not stifle creativity, there are

some architectural design considerations when building the Reference Architecture.

How detailed should it be? Should internal block diagrams be filled out? Should sate

machines and mission phase descriptions come fully described? These considerations

are key points of discussion with the faculty that will teach these courses, and these

points will be discussed later. Additionally, the Reference Architecture project used

teamwork and input from faculty, lab technicians, and other students who previously

went through this program.

Once completed, this Reference Architecture would be used from the very be-

ginning of the design course sequence all the way through its conclusion. They will

be given the Reference Architecture file with their mission-specific MCD and some

guidance, and then they design the system from the ground up using that template.

3.4 Instructor Feedback

The primary users of this Reference Architecture will be students going through

the design sequence, but the instructors for those courses need to accept this model

and understand the basics of the Reference Architecture. They will surely be asked

questions about it and they decide what deliverables should look like, so instructor

feedback was crucial throughout the development of this Reference Architecture. At

the very beginning, before beginning modeling work, the three instructors were con-

39

sulted for their desires and expectations and to note any changes in the course series

going forward. Furthermore, once the Reference Architecture was ready for a demon-

stration, they were consulted again, this time providing specific feedback on tables,

traceability matrices, and document composition. This feedback was extremely useful

to keep the Reference Architecture in scope and to ensure it will be useful for the in-

tended users. The instructors do not need to be experts on the actual model, though,

so guidance was provided within the model to help guide students. If students are

stuck and instructors cannot help, they have free reign to tailor the model to meet

the course requirements.

3.5 Tool Validation

Before the Reference Architecture was ready for teams to begin using, a full test

was conducted to validate the tool and ensure everything worked as planned. Grissom-

P is a mission that students were assigned in a previous sequence, and it is also a

real world AFIT mission with requirements and documentation, so it was chosen as

the test bed for this Reference Architecture. It is also a unique mission, given that

it has two distinct and physically separated payloads, so it tested the modularity of

the Reference Architecture. Near the end of the Reference Architecture design pro-

cess, Grissom P was used as an example to run through the Reference Architecture

quickly to ensure each step was working properly. This highlighted several issues that

needed to be fixed before the faculty demonstration, and then, once the Reference

Architecture was ready, Grissom-P was fully fleshed out using the Reference Architec-

ture. This was done by another graduate student, which helped prove that someone

unfamiliar with the architecture could use and understand it.

The ultimate test will be when a new cohort of students use the tool. Lessons

learned from these system designs will improve the model going forward to address

40

any remaining gaps or adapt to changing requirements. This is the whole point of a

Reference Architecture, after all.

3.6 Summary

Chapter III described the status quo and inspirations for the Reference Archi-

tecture. Then, the process to create it was described, as well as the process for

stakeholder input and model validation.

41

IV. Analysis and Results

4.1 Overview

Chapter IV details the resulting Reference Architecture using the methodology in

Chapter III. The first section will describe the overall layout and navigation of the

model, and then each major section of the Reference Architecture will be explored,

highlighting the most important diagrams and new features. An in-depth help guide

is included in the Reference Architecture file, so this chapter will not serve as a manual

for the tool.

4.2 Organization

The CubeSat Reference Architecture is a large model, so the organizational struc-

ture is critically important. Many users of this model will be new to MBSE or at

least new to Cameo Systems Modeler, and with so many diagrams and packages, it

can be easy to get lost or have trouble finding a diagram that you need. Furthermore,

modelers may prefer different navigational styles. Some prefer visual diagrams, while

others prefer navigating a nested folder structure, while others still may prefer to

directly navigate to a desired diagram with one click from an index. To address these

preferences, multiple ways to navigate the model have been provided. Each naviga-

tion style is based off the four pillars of SysML - Requirements, Structure, Behavior,

and Parametrics [31]. This model uses the term analysis instead of parametrics to

cover more content, but does contain the parametric diagrams to assess system per-

formance. The extra package, called Document Generators, contains templates that

pull information from each of other packages, so it is kept separate.

The standard way is to navigate using the ”Containment Tree,” or Cameo’s File

Tree, as shown in Figure 19. Notice the numbered packages for the most important

42

packages to guide users to the appropriate section. Note that some packages, such as

those inside the Generic CubeSat Model, include hyperlink icons, informing the user

that those packages are also links to more detailed diagrams. A user can navigate

this tree and find the appropriate diagrams in an intuitive manner. For example, if

they wish to work on the CubeSat’s physical decomposition, they will navigate to

the Structure package and find the CubeSat package within. If they need to generate

some activity diagrams for mission phases, those diagrams will be located within the

Behavior section, and so on.

Figure 19. Containment Tree

Some users may prefer to navigate using diagrams instead. This has been built in

to the Reference Architecture by creating top level ”organization diagrams” for the

most used sections. Figure 20 shows the first page users see when they open up the

model, and each icon within that diagram is hyperlinked to another, similar diagram

at the lower level. These organization diagrams will be detailed in upcoming sections.

43

Figure 20. Model Organization

Finally, some users may wish to directly navigate to a diagram by name. The

”Index” diagram shown in Figure 21 shows all of the built-in diagrams and tables

that users will be expected to complete during the design sequence, organized by

category. If additional diagrams are created, this index will need to be updated

accordingly. This Index provides a very fast and easy way to open up one diagram

in particular if the user forgot where a diagram was located, for example.

44

Figure 21. Index

45

4.3 Guidance

To assist users who are less familiar with Cameo or MBSE, a full CubeSat Mod-

eling How-To Guide has been included within the model. Users can double-click the

document icon in Figure 22 and open up a thorough guidebook that walks through

each section and each diagram that users can fill out, in addition to guidance re-

garding the new Document Generator feature. The Guidance package also contains a

set of modeling rules and a draft ”active validation” profile to help identify common

errors or missing data in the model. Figure 23 shows the structure of the included

modeling rules, intended to keep the model standardized and to prevent common er-

rors. Each of these rules is included in the Rules table with text descriptions. These

are not mandatory to follow and these are only draft requirements created by the

author. A wider conversation is required to establish modeling standards at AFIT,

so these are just ideas to explore at a later date.

Figure 22. Guidance

46

Figure 23. Modeling Rules

In addition to the modeling rules provided, a pared down version of SAIC’s DE

Validation Profile [28] is provided as well. As discussed in section 2.6, the Validation

Profile does not meet the needs or practices of this model’s intended audience, but

there were several helpful active validation rules that were borrowed. A future effort

may explore this concept further, but for now, roughly a third of the supplied rules

were helpful for this context. Some very helpful rules include those that highlight

when a requirement does not have proper traceability or is missing requirement text,

47

rules that highlight missing elements in diagrams (such as starting and final nodes in

activity diagrams), and a rule that checks to make sure each Value Property has an

associated Value Type and Unit. If a modeler runs the validation profile during the

design process, they may see helpful errors pointing out missing elements, so it does

add some value to the Reference Architecture.

4.4 Requirements

Users will start their design process in the Requirements package. The Require-

ments Organization diagram is shown in Figure 24, which links to each applicable

diagram and provides basic instructions to help users navigate. While the Require-

ments process is not a linear process to be accomplished at one time, it is structured

in the order in which users will likely need the included diagrams.

48

Figure 24. Requirements Organization

49

The Requirements section begins with users creating blocks for their source mate-

rial. This Source Documentation diagram will continue to grow over the course of the

design sequence, but some common CubeSat references are included and attached.

By attaching source material to blocks, as shown in Figure 25, requirements can be

properly traced to the exact source document version. Furthermore, it makes it much

easier for users to quickly see the source documentation, instead of needing to search

the internet based off the source name.

Figure 25. Source Documentation

The Reference Architecture assumes that design teams were provided with an

MCD. Given that, users should parse the contents of the MCD into blocks that can

be used within the model. Instructions are provided in the diagrams for how to

accomplish this, but the goal is to have a set of Design Constraints and Required

Capabilities, an Operational Context statement, a Mission Need statement, and a

matrix that traces these new blocks to the MCD. If any changes occur after the

original MCD was parsed, users can generate a new MCD based off these tables using

50

the Document Generator tool. Note also that the tables provided include an ID

naming convention that will be continued when users add additional entries into the

respective tables. Additionally, each table is populated with blocks that contain the

correct modeling ”stereotype” so that tables can properly and automatically populate.

Figure 26 shows an example of a Design Constraints table for one class project, and

that pattern repeats for the Required Capabilities table. The tables as provided

only include sample names, as these will need to be replaced as soon as an MCD is

provided.

Figure 26. Design Constraints

The next major step is to perform a Stakeholder Analysis as a team. Figure 27

shows the structure of the Stakeholder Analysis package, with a package for Stake-

holder Concerns and another for Stakeholder Needs. Design teams will first brain-

storm a list of Stakeholders and document whatever concerns they may have in the

form of ”comments” in Cameo. Some generic Stakeholders are provided as well as

generic ”concerns” that users should edit and add to for their unique program. The

issue with these Stakeholder Concern ”comments” is that requirements cannot be

51

traced directly to them. To address this limitation, Stakeholder Needs are then cre-

ated as blocks that represent those previously created concerns. Several concerns

may address the same topic, so one Stakeholder Need block can be created that maps

to each relevant concern. Figure 28 shows a portion of the matrix that will auto-

matically change after the previous steps. By mapping the new Need blocks to the

Concern comments and to their applicable stakeholder, the user can see where each

Stakeholder Need comes from. Once the team has a complete list of Stakeholder

Needs with traceability back to their concerns, the Stakeholder Analysis Report can

be generated. The Document Generator process will be detailed later in this chapter.

Figure 27. Stakeholder Analysis

52

Figure 28. Stakeholder Matrix

The remaining sections within the Requirements package will be completed later

in the design sequence. It is structured using a tiered Requirements convention, where

teams start by generating a list of Mission Requirements, then a list of System or

Space Vehicle Requirements, and finally a list of Subsystem Requirements for each

subsystem. Each tier is organized in a similar fashion, but with different stereotypes

53

and some different data fields. Additionally, template requirements for each tier have

been provided, as well as some example entries in other data fields to show as exam-

ples, as shown in Figure 29. Each tier of requirements also comes with a traceability

matrix for users to trace or derive that tier from. Note that the Subsystem Require-

ments table, shown in Figure 30, is further broken out into subsystem categories, with

template requirements for each to get teams started on the brainstorming process.

Figure 29. Mission Requirements

54

Figure 30. Subsystem Requirements

4.5 Structure

After coming up with a list of requirements, teams need to decide on a physical

structure that can satisfy those requirements. Instead of starting from a blank slate,

this CubeSat Reference Architecture provides teams with a generic physical decom-

position for a CubeSat and its various subsystems, as well as related systems, such

as the Launch Vehicle and the Ground segment. Figure 31 shows a high level view of

the areas that the Reference Architecture includes. Each package is hyperlinked to

more detailed diagrams to fill out, and the most relevant value properties have been

included for each.

55

Figure 31. Mission Context bdd

56

Figure 32 shows the same Mission Context, but in the form of an internal block

diagram so that various data or signal flows can be shown, highlighting interactions

between the CubeSat system of interest and relevant systems in the overall mission

context. This diagram also highlights key operations and relevant value properties

that add value to this view.

Figure 32. Mission Context ibd

A generic physical decomposition of a standard CubeSat has been included to

help teams stay organized and to provide a starting point to work from. Figure

33 shows a top level view, with subsystems being rolled up into subsystem blocks.

Each of those subsystem blocks contains more detailed diagrams within for individual

components. Organizing it in this fashion prevents massive, unreadable diagrams

57

from being presented to stakeholders and instead, the specific details for different

components are only shown in the appropriate level diagram. The primary benefit of

this provided physical decomposition is the value properties included in each block.

The pre-built value properties allows for analysis tools to be included in the Reference

Architecture, because the inputs are already defined. The included value properties

also follow a ”camel case” naming convention that reduces errors when they are used

with constraint blocks. Teams can add additional value properties and use them for

analysis, but the provided set is a well-rounded start.

58

Figure 33. Physical Decomposition

59

Figure 34 shows an example of one of those subsystem views, and Figure 35 shows

how teams can tailor that generic diagram into something that meets their unique

mission needs. In this example, the ADCS subsystem had unnecessary components

that were removed, and values were added to each remaining block to describe the

chosen components. Additional components were also added to address the needs of

this particular system.

Figure 34. ADCS Template

Figure 35. ADCS tailored

60

While this CubeSat Reference Architecture is not intended to be fully simulated,

a State Machine diagram is necessary to highlight the states that the CubeSat may be

in. The diagram in Figure 36 serves as an example so teams know what a CubeSat

state machine might look like, but teams should make their own to describe their

unique mission CONOPS. By filling in this diagram, additional tables will also be

pre-generated, pulling state transitions, guards, etc. from this diagram. These state

transition tables and state descriptions are useful for stakeholder documentation when

the CubeSat states are discussed.

Figure 36. State Machine

4.6 Behavior

One of the most important documents that teams will need to create is the

CONOPS, which requires most of its data from this Behavior section of the Reference

Architecture. Figure 37 shows the top level organization of the Behavior package with

the key diagrams that ultimately fill out the CONOPS document.

61

Figure 37. Behavior Organization

The note in Figure 37 describes what teams should use each included package for,

and each package is hyperlinked to more detailed diagrams to fill out.

A template OV-1 has been included in a free form diagram, and teams will replace

this template image with their own so that documents can include the image automat-

ically. The OV-1 is a “High Level Operational Concept Graphic,” usually a preferred

view of a mission from Senior Leaders. The Department of Defense Architecture

Framework describes it as “a mission, class of mission, or scenario. It shows the main

operational concepts and interesting or unique aspects of operations. It describes the

interactions between the subject architecture and its environment, and between the

62

architecture and external systems. The OV-1 is the pictorial representation of the

written content of the AV-1 Overview and Summary Information. Graphics alone are

not sufficient for capturing the necessary architectural data. The OV-1 provides a

graphical depiction of what the architecture is about and an idea of the players and

operations involved. An OV-1 can be used to orient and focus detailed discussions.

Its main use is to aid human communication, and it is intended for presentation to

high-level decision-makers. [17]”

The Mission Phases package (Figure 38) contains a block definition diagram which

has a place for each individual mission phase’s activity diagram, subsystem status

table, and text description. During each mission phase, the CubeSat’s various sub-

systems will be in unique configurations, and this package includes an easy way to

capture those. To capture these different configurations, tables have been created for

teams to determine the various states for each subsystem for each phase. In addition

to the subsystem configuration tables, teams should write textual descriptions of the

applicable mission phase in the “Mission Phases” table (Figure 39) and create activ-

ity diagrams to show what happens in each phase. All of these will be used in the

CONOPS document.

63

Figure 38. Mission Phases

64

Figure 39. Mission Phase Descriptions

The Fault Management package, shown in Figure 40, includes similar tables that

will describe the various fault states in narrative form and in tables that shows each

subsystem status.

65

Figure 40. Fault Management

The CubeSat Activities package can hold any additional activities needed to de-

scribe the system. Activity diagrams for each critical mission phase have been created,

although most only contain the starting and ending nodes. These vary substantially

from mission to mission, so teams will need to populate these on their own. Finally,

the Use Cases package includes a generic Use Case diagram that should be tailored.

4.7 Analysis

The Analysis portion is how teams show that their requirements are verified and

how they track any external analysis done to generate requirements. Figure 41 shows

66

the top level organizational structure. As is the case throughout this Reference Ar-

chitecture, many of the included packages are hyperlinked to more detailed diagrams.

The Trade Studies package is a place to store any applicable trade studies in block

form. This allows for requirements to be traced to any relevant analysis done in other

tools. For example, if a team performed a Launch Vehicle Trade Study that ultimately

impacted a requirement, that requirement could be traced to the Launch Vehicle

Trade Study block, which includes the most current trade study as an attachment.

This makes it very easy to know exactly where the numbers or decisions came from

and stores that in the model for easy reference and modification from the team.

67

Figure 41. Analysis Organization

The Verification Analysis package contains several templates or patterns that high-

light some capabilities of Cameo for requirement verification. For example, the Ther-

mal Analysis parametric diagram in Figure 42 shows how to use a MATLAB script

to perform analysis based off the values entered in the thermal subsystem, as well as

any other values that affect these calculations, such as the CubeSat’s mass and some

orbital parameters. The code in Figure 42 is not necessary to read in this thesis, and

is usually hidden from view when scripts become lengthy, but is shown here just to

68

highlight where the code is stored. This section is intended to encourage teams to

perform analysis within the model instead of in other tools. By performing analysis

within the model, easy verification of candidate systems can be accomplished using

Instance Tables or the default values assigned to component value properties. The

CubeSat Reference Architecture purposefully does not include default values for the

components’ value properties, but an instance table, such as the one in Figure 43, can

be simulated using the MATLAB code to compare how different candidate systems

perform. This instance was simulated, and the results are shown in Figure 44. By

changing one or several value properties in the relevant blocks or in the instance ta-

ble, these graphs automatically update to show how the performance changes. This

is extremely useful for many requirements that are affected by multiple subsystems

or multiple components. A constraint block can be created that uses those value

properties as inputs, and the performance outputs can be quickly assessed in mul-

tiple system configurations. The included parametric diagrams serve as patterns to

replicate and modify, reducing the learning curve for teams who haven’t learned these

capabilities yet.

69

Figure 42. Thermal Analysis

70

Figure 43. Thermal Analysis Instance

71

Figure 44. Thermal Analysis Run

72

As teams progress from the design, they will test physical hardware. Before teams

begin testing physical hardware though, they need to document their test plans.

The Hardware Tests package includes workspaces for each subsystem that establishes

consistency and makes it easier to generate the necessary tables to describe test

activities. Each requirement should be tied to a test (sometimes multiple requirements

can be verified by one test), and this can be done in diagram form. For example, if

the Electrical Power System (EPS) lead needs to plan EPS testing activities, they

can open up the EPS Tests bdd and follow the template process. If they drag and

drop all of the applicable subsystem requirements onto this diagram, as shown in

Figure 45, they can easily create test activities and assign a ”verify” relationship

between them, which automatically populates the included tables. In this example,

notice the “Weigh Components” test, and that test verifies the EPS Subsystem Mass

requirement. This pattern should be continued until each requirement is verified by

some activity. Finally, the test activity tables provide a place to textually describe

what happens in each test to verify the requirement(s). These tables are all useful

for the Test Plans and Test Reports, keeping the model as the primary document

instead of different files and formats for each subsystem. The subsystem requirement

tables in this section also include a method for tracking testing progress while also

establishing a common set of definitions. Previously, tests that were ”not verified”

for whatever reason were all in one category, causing confusion amongst stakeholders.

Now, tests can be labeled from a drop-down menu as ”not verified” for the specific

reason and they are labeled in a color to bring attention to problematic tests. Figure

46 shows an example of how this could be used. The Verification Status legend is

located in the Component Library and can be modified if definitions or categories

change.

73

Figure 45. EPS Tests

Figure 46. EPS Test Verification

4.8 Component Library

The Component Library is a function inspired by the SUAS Reference Architecture

[20]. The goal is to have a library of components to choose from for each subsystem

for rapid prototyping that improves over time. As teams create new CubeSat designs,

the individual components can be stored in the Component Library for future reuse

by other teams. For example, if there are multiple commercially available solar arrays

that previous teams have used in their designs, those solar arrays will be available

to reuse with all of their value properties already filled in. A team could swap out

74

multiple solar arrays from the Component Library in their EPS subsystem diagram

and perform analysis to quickly assess how each one performs for their system. Figure

47 shows the top level view of the Component Library, which has a separate package

for each subsystem.

Figure 48 shows how it could be used in a simple example with different CubeSat

bus sizes. In the Structures package, multiple chassis sizes, with their dimensions all

filled out, can be quickly copied and pasted into a new model. If some value differs

from the default values provided, the team would just need to make those modifi-

cations. Figure 49 shows how Enumeration lists are also stored in the component

library to be used throughout the model. These enumeration lists are all consoli-

dated in their respective subsystem packages instead of scattered across the physical

model. In this example, instead of typing in a string of text to denote the battery

chemistry, the user can just select from a drop-down list of the available types in the

enumeration list. These are created for many subsystems, and as new choices become

available, these can be updated.

75

Figure 47. Component Library

Figure 48. Component Library - Structures

76

Figure 49. Component Library - EPS

Another important area of the Component Library is the custom Value Type

library. Using the default ISO-8000 library seemed like the logical choice for units,

but there were several issues with it that caused frustration over time. Most value

types in the ISO-8000 library were never used and crowded the selection window

when a user would try to find a unit, the spelling and naming conventions did not

match what students were expecting or were accustomed to, and most importantly,

they were not able to be modified without causing errors every time Cameo was

opened. To alleviate these issues, an entire custom value type library was created to

stay more organized and allow for easy modifications and customization. The Value

Types, Units, and ”QuantityKinds” (a SysML necessity for units to work properly

in analysis) are all stored neatly in packages based off their type. When a user is

going to add a new Value Property to a component block, it is now very easy to

find the relevant value type to assign to it. The default practice amongst students

without having this central repository is to just type in a new Value Type, and then

that Value Type appears in the same location as that block. This isn’t necessarily

a bad thing on a small model, but a Reference Architecture is meant to be used for

77

multiple candidate architectures and multiple projects, and referencing a new Value

Type that belongs to another physical model should be avoided. For that reason,

all Value Types are stored in one central place within the Component Library. This

has also been done with Object Flows in the Reference Architecture. Object Flows

represent the flow of objects, whether they are matter, energy, or data, primarily used

in the Mission Context diagram shown earlier in Figure 32.

78

Figure 50. Custom Value Type Library

79

4.9 Document Generators

While the model should be able to stand alone to represent the CubeSat system,

stakeholders may prefer to view system details in document form. This could be

because they don’t have access to the modeling tool, or because they are more accus-

tomed to seeing traditional reports. Whatever the reason, it would save time if those

documents could be generated from model elements alone. Copying diagrams into a

word processor and transcribing the requirements, etc. into tables, as is traditionally

done, causes issues with version control and maintaining consistency. For example,

if a team is writing a Space Vehicle Requirements Document, they could copy the

requirement text from the model into a table in Microsoft Word, but if a requirement

changes within the model, the team would need to catch that change and manually

update any documents as a result. This CubeSat Reference Architecture proposes a

new method for generating documents using Apache’s Velocity Template Language.

Cameo Systems Modeler is written in Java, so each model element is defined using

Java code. This can be taken advantage of by populating a Microsoft Word file with

code that imports those Java elements when it’s run. Essentially, the Word templates

tell Cameo what elements to export and in what order and in what format. This al-

lows for fully custom, well-designed documents to be generated that require minimal

formatting before delivery to stakeholders. If any model elements change, the team

can just regenerate the document, and all tables, diagrams, etc. will always reflect

the latest version that resides in the model.

Figure 51 shows an organizational diagram showing the pre-built generators that

are used in AFIT’s Spacecraft Design Sequence. Instructions are also included, and an

in-depth, commented Generic Model Document is provided. This generic document

is the foundation for all other templates. This generic document has code for any

Reference Architecture section and guidance for how to modify it and why the code

80

is written the way it is. If a new document is requested that does not have a template

yet, a team can take portions from this master document into a new template for

whatever model elements they wish to display. It also maintains a revision history

that resides in the model, so when changes are made, the team can notate those and

they will show up in all future documents in a table of revisions.

Figure 51. Document Generators

The title page of each template includes some custom functions that make the

following code easier to write. Figure 52 shows several of these tools that are im-

ported, allowing for tables to be easily exported and allowing for custom popup

dialog prompts if a document generator should ask for a diagram’s location. In this

example, notice how a popup window asks the user to select their project’s logo from

among the model’s free form diagrams, which is then imported by $diagram.image.

81

Code that follows a ”#” or ”$” is not displayed in the resulting document once it

runs. Some variables, such as $DocumentTitle, $Classification, and $Revisions are

variables that are stored with the template, while others, such as $missionRequire-

ment are pulling each model element with that stereotype assigned to it. Note that in

the Reference Architecture, the ”Mission Requirement” stereotype is read by Java as

the ”missionRequirement” class. To prevent issues if users rename stereotypes, this

practice has been minimized, opting instead to just import tables in their entirety

when possible.

Figure 52. Document Generator Title Page

82

One of the most common functions within these document generators is importing

tables from the model and displaying it using Microsoft Word’s table tool. Some tables

in the model are quite large and hard to read if they are copied and pasted onto a

document, so these templates call the internal elements instead and display them in

a way that’s very easy to customize. Figures 53 and 54 show two ways to import

and display tables. Figure 53 shows a more detailed method to pull only the specific

columns you want, which might be useful for very large tables. This method also

allows for default column widths to reduce formatting once it is generated. This does

present issues if users were to rename the ”missionRequirement” class, as the code

wouldn’t find anything to import. The comments in the code should make it clear if

someone opens the template to troubleshoot, but this is still a risk present using this

method.

Figure 53. Manual Table Method

Figure 54 shows a more elegant solution, where the template imports a table by

name and displays it exactly as it appears in the model. The downside with this

method is that it requires some modifications once it is generated, as columns will

all be equally sized. Furthermore, some extra columns may be shown that are not

desired, but these can be easily deleted. This method is preferred throughout the

included templates as it is less likely to require modifications. It also displays new

83

columns that users may wish to add without requiring an understanding of the VTL

language to import those new elements.

Figure 54. Automatic Table Method

4.10 Validation of Model

Modeling styles vary from person to person and organization to organization, so

external feedback was desired for this Reference Architecture to ensure it made sense

to others. To accomplish this, the model was first demonstrated to other students

who previously took AFIT’s Space Vehicle Design sequence, and they were asked to

model a system using the tool. This peer feedback process led to many clarifications

and tweaks, and their models were the impetus for many of the provided value prop-

erties. Furthermore, their common questions were addressed in the included help

guide. Technicians who work on the AFIT CubeSat program were also consulted.

Understanding what they look for and what they call components and subsystems

motivated some design changes to remain as consistent as possible.

After getting peer feedback, the model was demonstrated to faculty members who

will teach the courses in the Space Vehicle Design sequence. Of the three instructors,

only one has significant modeling experience, so this model and included guidance

needed to be usable by students without requiring faculty help for normal modeling

questions. The primary inputs required from the faculty were the inputs to the

84

Document Generators. Because the faculty members decide the format and objectives

for each deliverable report, they were given a chance to provide comments or changes

to the relevant documents that this Reference Architecture will generate for their

classes. If these requirements change in the future, which is highly likely, the students

have been provided guidance for how to make a new template or modify an existing

template so the instructors will not have to understand the underlying template code.

Finally, the CubeSat Reference Architecture is being used by the current cohort

of students in the course sequence. When the first course started, they were given a

lengthy recorded demonstration of the model, with guidance for how to use the cloud

environment, how to use the document generators, and how to use and tailor the

template model for their unique missions. During the duration of the course, they

have an avenue to ask questions and receive help with the model, which may also lead

to changes or improvements in the core Reference Architecture.

4.11 Summary

This chapter presented the design and implementation of a CubeSat Reference

Architecture geared towards a University team on a compressed schedule and with

limited modeling experience. The organizational structure was discussed, and several

of the most important diagrams and built-in tools were explored.

85

V. Conclusion

5.1 Overview

Chapter V provides conclusions in light of the overall research that was accom-

plished. The research questions presented earlier are answered based on the work

performed to this point. Finally, important lessons learned throughout this research

development are recorded along with future work that could be done to extend this

research.

5.2 Significance of Research

This research was significant due to the current emphasis in the US Air Force

and US Space Force on Digital Engineering [1]. By using this Reference Architecture,

engineers will have more experience using a model as the ”source of truth” for analysis,

requirements, and as the basis for traditional documentation. Furthermore, several

new concepts and functions were explored in this Reference Architecture that are

now being used in other models, such as the methodology for generating custom

documents, using a validation suite, and establishing a custom Value Type library

instead of the provided ISO-8000 library. In addition, this model is being used as the

platform for more complex integration with MATLAB and STK by other researchers

at AFIT.

As stated in Chapter I, the research objectives were as follows:

1. Create a practical and useful Reference Architecture for rapidly-prototyping

CubeSat designs.

2. Create easy-to-use document generators that use model elements to generate

traditional system level review documentation.

86

3. Present this Reference Architecture to AFIT instructors for feedback.

4. Lay the groundwork for future analysis work with STK and MATLAB integra-

tion for more comprehensive mission analysis using model elements.

These research objectives have all been met over the course of this project. In

addition, the following research questions were considered:

1. What are the tools necessary to perform mission modeling using model-based

systems engineering?

The mission modeling effort is being done using this CubeSat Reference Ar-

chitecture to provide all inputs into constraint blocks that are formatted to

integrate with MATLAB and STK.

2. What viewpoints are most useful to common stakeholders?

Most stakeholders still prefer the traditional documentation, which required

narrative sections to be built into the document generators in addition to using

the system model elements. Additionally, stakeholder prefer higher level view-

points with less clutter. Detailed subsystem details have been limited to the

appropriate subsystem diagrams instead of crowding the main physical decom-

position. Limiting the number of blocks on diagrams led to better views for

presentations, even though it was quite difficult to simplify some diagrams.

3. How can useable documentation be generated from only model elements, keeping

the source of truth within the model?

Custom work using Apache’s Velocity Template Language was needed to gener-

ate polished documents using model elements. The built-in tools within Cameo

are not sufficient, so this was a substantial effort to code and document.

4. What needs to be done in the model to allow for external tools (STK, MATLAB,

etc.) to interact with the MBSE tool?

87

The most important thing was to establish a library of value properties that

worked well with MATLAB and STK. Lessons learned with custom units and

with naming conventions led to the conventions used in the Reference Architec-

ture so that these errors are avoided.

5. Can cloud-based collaboration improve the MBSE design process for interdisci-

plinary teams?

The cloud-based collaboration was extremely valueable. Lessons learned for

this process have been handed down to the first cohort of students to use this

environment in classes. There are some inherent difficulties with storing sensi-

tive information in the cloud, but those issues are being worked out due to the

benefits of the cloud-environment.

5.3 Lessons Learned

Over the course of this research, there were several lessons learned that warrant

discussion. First, developing a Reference Architecture should not be a solitary en-

deavor. The early phases of this project were done primarily alone, but the most

progress was made when other opinions were taken into consideration. Additionally,

the model should be geared towards the key stakeholders, not just the modeler’s pref-

erences. This was made apparent during demonstrations to faculty members, whose

opinions are the most important for this effort. Some design choices made sense

originally, but needed modifications after seeing the greater context of the course

objectives.

Another lesson learned was to embrace the cloud environment for collaboration.

By using the cloud environment, multiple people could be making edits at the same

time, and changes are reflected for all users once they are committed. Its well worth

the effort in setting up the cloud environment, getting each team member an account,

88

and walking through the best practices for cloud modeling at the very start of the

project.

Finally, throughout the design process, the issues caused by copying and past-

ing blocks within a model became apparent. If a user copies and pastes an entire

model (the Generic CubeSat Model for instance), everything seems to work perfectly.

However, if a user copies just one internal package over to a different model, issues

start popping up where you least expect them. Making a Reference Architecture that

includes multiple full models within requires careful consideration before copying el-

ements from one model to another.

5.4 Future Work

One of the primary goals for this CubeSat Reference Architecture was to establish

the platform for future work. Some of that work has already begun, including an

Integrated Mission Modeling Tool that uses the physical structure in the Reference

Architecture to create detailed MATLAB Simulink and STK simulations for mission

modeling. These tools will improve the fidelity of mission simulations and provide

visual views of the orbits for ground contacts, while also simulating multiple payloads

at once.

The Reference Architecture is meant to be improved and adapted over time. As

new teams use the model, they will be creating new physical blocks for components

they chose, and they will be creating new constraint blocks for analysis. These can be

saved in the component library for future reuse, so over time, the component library

can grow and contain more ”plug and play” blocks. Eventually, the component library

should have a variety of components for each subsystem to choose from, and there

should be analysis blocks to tailor depending on the mission’s requirements.

89

There are also some gaps in the Reference Architecture that can be tackled by

other researchers in the future. For example, this current iteration focuses on verifying

subsystem level requirements with hardware tests, but most mission level or system

requirements are not properly accounted for. This was due to the specific requirements

of the Spacecraft Design Sequence at AFIT, but additional functionality can be built

in to verify requirements at the mission or system level for teams who have a need for

that information. Furthermore, only minimal risk functionality has been provided.

Currently, a user can assign a risk level to a requirement, but there is no place to

describe that risk or risk mitigation steps.

5.5 Final Thoughts

This research used the Object Oriented Systems Engineering Method with SysML

to create a CubeSat Reference Architecture. While originally intended to be used by

students at AFIT in their Spacecraft Design Sequence, the model can be tailored to

be used by other teams that have similar goals.

This research delivered a variety of helpful tools for teams to use that makes their

modeling efforts easier. Auto-populating tables and matrices, a library of parts and

value properties to choose from, analysis patterns to tailor, and document generators

will save time and hopefully improve the quality of CubeSat models going forward.

Reports will also be more consistent and standardized according to stakeholder pref-

erence, and the work spaces provided encourage teams to use the model for storing

all relevant data and analysis. Most importantly though, this Reference Architecture

is cementing MBSE practices in teams who have limited experience with modeling

tools, better preparing them for the future of spacecraft design.

90

Bibliography

[1] U.S. Air Force. Air Force of the Future is Faster, Smarter, Bolder, 2019.
URL https://www.af.mil/News/Article-Display/Article/1963733/roper-
air-force-of-the-future-is-faster-smarter-bolder/.

[2] Erik Kulu. Nanosats database, 2020. URL https://www.nanosats.eu/.

[3] CubeSat Design Specification Rev. 13. California Polytechnic State Univer-
sity, 2014. URL http://cubesat.org.www.cubesat.org/images/developers/
cds rev13 final2.pdf.

[4] NASA CubeSat Launch Initiative. Cubesat 101: Basic concepts and processes
for first time cubesat developers, 2017. URL https://www.omgwiki.org/MBSE/
doku.php?id=mbse:incoseoosem.

[5] James R. Wertz. Space Mission Engineering: The New SMAD. Microcosm Press,
Torrance, CA, 2011. ISBN 978-1881883159.

[6] eoPortal. FalconSAT-7, 2019. URL https://directory.eoportal.org/web/
eoportal/satellite-missions/f/falconsat-7.

[7] Air Force Academy. FalconSAT-6, 2018. URL https://www.usafa.edu/news/
air-force-academy-satellite-to-lift-off-nov-19/.

[8] Mark Harris. Swarm Wants to Send Hundreds of Tiny CubeSats Into
Orbit. IEEE Spectrum, 2019. URL https://spectrum.ieee.org/tech-
talk/aerospace/satellites/swarm-wants-to-fly-the-sky-with-tiny-

cubesats.

[9] eoPortal. SSO-A, 2018. URL https://directory.eoportal.org/web/
eoportal/satellite-missions/content/-/article/sso-a.

[10] Dennis Buede and William Miller. The Engineering Design of Systems: Models
and Methods. John Wiley and Sons, Hoboken, NJ, third edition edition, 2016.
ISBN 978-1119027904.

[11] Lenny Delligatti. SysML Distilled. Addison-Wesley, 2014. ISBN 978-0321927866.

[12] Tim Weilkiens. SYSMOD - The Systems Modeling Toolbox. MBSE4U, second
edition edition, 2016. ISBN 978-3981852981.

[13] Hans-Peter Hoffmann. Systems Engineering Best Pracctices with the Rational
Solution for Systems and Software Engineering. IBM, deskbook release 3.1.2
edition, 2020.

91

https://www.af.mil/News/Article-Display/Article/1963733/roper-air-force-of-the-future-is-faster-smarter-bolder/
https://www.af.mil/News/Article-Display/Article/1963733/roper-air-force-of-the-future-is-faster-smarter-bolder/
https://www.nanosats.eu/
http://cubesat.org.www.cubesat.org/images/developers/cds_rev13_final2.pdf
http://cubesat.org.www.cubesat.org/images/developers/cds_rev13_final2.pdf
https://www.omgwiki.org/MBSE/doku.php?id=mbse:incoseoosem
https://www.omgwiki.org/MBSE/doku.php?id=mbse:incoseoosem
https://directory.eoportal.org/web/eoportal/satellite-missions/f/falconsat-7
https://directory.eoportal.org/web/eoportal/satellite-missions/f/falconsat-7
https://www.usafa.edu/news/air-force-academy-satellite-to-lift-off-nov-19/
https://www.usafa.edu/news/air-force-academy-satellite-to-lift-off-nov-19/
https://spectrum.ieee.org/tech-talk/aerospace/satellites/swarm-wants-to-fly-the-sky-with-tiny-cubesats
https://spectrum.ieee.org/tech-talk/aerospace/satellites/swarm-wants-to-fly-the-sky-with-tiny-cubesats
https://spectrum.ieee.org/tech-talk/aerospace/satellites/swarm-wants-to-fly-the-sky-with-tiny-cubesats
https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/sso-a
https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/sso-a

[14] Jeff A. Estefan. Survey of Model-Based Systems Engineering (MBSE) Method-
ologies rev. B. Technical report, Jet Propulsion Laboratory, 2008. URL
http://www.omgsysml.org/MBSE Methodology Survey RevB.pdf.

[15] David Walden, Garry Roedler, Kevin Forsberg, Douglas Hamelin, and Thomas
Shortell. Systems Engineering Handbook: A Guide for System Life Cycle Pro-
cesses and Activities. INCOSE, San Diego, CA, fourth edition edition, 2015.
ISBN 978-1118999400.

[16] OMGWiki. INCOSE Object-Oriented Systems Engineering Method (OOSEM),
2011. URL https://www.omgwiki.org/MBSE/doku.php?id=mbse:incoseoosem.

[17] The DoDAF Architecture Framework Version 2.02. Office of the Assistant Secre-
tary of Defense Networks and Information Integration (OASD/NII), 2010. URL
https://dodcio.defense.gov/Library/DoD-Architecture-Framework/.

[18] Robert J. Cloutier, Gerrit Muller, Dinesh Verma, Roshanak Nilchiani, Eirik Hole,
and Mary Bone. The Concept of a Reference Architecture. Technical report,
Systems Engineering, Vol. 13, No. 1, 2010.

[19] Reference Architecture Description. Office of the Assistant Secretary of Defense
Networks and Information Integration (OASD/NII), 2010.

[20] David Jacques and Amy Cox. The use of mbse and a reference architecture
in a rapid prototyping environment. Technical report, Air Force Institute of
Technology, 2019.

[21] David Kaslow. Developing and distributing a cubesat model-based systems en-
gineering reference model - status. Technical report, 2016.

[22] David Kaslow and Azad Madni. Validation and Verification of MBSE-compliant
CubeSat Reference Model. 2017. doi: 10.1109/OCEANS.2018.8604771.

[23] David Kaslow, Philip T. Cahill, and Bradley Ayres. Development and application
of the cubesat system reference model. 2020.

[24] David Kaslow, Grant Soremekun, Hongman Kim, and Sara Spangelo. Inte-
grated Model-Based Systems Engineering (MBSE) Applied to the Simulation of
a CubeSat Mission. IEEE Aerospace Conference, pages 5015–5020, 2014. doi:
10.1109/IROS.2011.6048729.

[25] David Kaslow, Bradley Ayres, and Philip Cahill. Development and Application
of the CubeSat System Reference Model. Technical report, IEEE, 2020.

[26] David Kaslow, Bradley Ayres, Philip Cahill, Laura Hart, and Rose Yntema. De-
veloping a CubeSat Model-Based Systems Engineering (MBSE) Reference Model
- Interim Status 3. Technical report, IEEE, 2017.

92

http://www.omgsysml.org/MBSE_Methodology_Survey_RevB.pdf
https://www.omgwiki.org/MBSE/doku.php?id=mbse:incoseoosem
https://dodcio.defense.gov/Library/DoD-Architecture-Framework/

[27] Sanford Friedenthal and Christopher Oster. Architecting Spacecraft with SysML.
AIAA, 2017. ISBN 978-15442880672.

[28] SAIC. SAID Digital Engineering Validation Tool, 2020. URL https://

www.saic.com/digital-engineering-validation-tool.

[29] Sanford Friedenthal, Rick Steiner, and Alan Moore. A Practical Guide to
SysML. Morgan Kaufmann OMG Press, second edition edition, 2009. ISBN
978-0123786074.

[30] Mark Maier and Eberhardt Rechtin. The Art of Systems Architecting. CRC
Press, 2009. ISBN 978-1420079135.

[31] SysML.org. Four Pillars of SysML, 2020. URL https://sysml.org/sysml-faq/.

93

https://www.saic.com/digital-engineering-validation-tool
https://www.saic.com/digital-engineering-validation-tool
https://sysml.org/sysml-faq/

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

25–03–2021 Master’s Thesis Sept 2019 — Mar 2021

A Reference Architecture for Rapid CubeSat Development

Kelly, Sean R, Capt

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENV-MS-21-M-240

Air Force Institute of Technology
WPAFB OH 45433
DSN 785-6565, COMM 937-255-6565

AFIT/ENV

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The CubeSat class of nanosatellites has lowered the barrier of entry to space and has rapidly gained popularity in recent
years. To successfully design a CubeSat system in a rapid cycle conducive to academic timelines, a Reference
Architecture geared towards University CubeSat development would be helpful. A Reference Architecture would speed
up the development process by providing a template, capturing previous work and lessons learned from subject matter
experts, providing a framework to focus on the CubeSat’s design rather than the fine details of modeling software. A
Reference Architecture can also add functionality that student teams could use and improve over time, such as pre-built
analysis functions and a library of components to choose from. This thesis presents a CubeSat Reference Architecture
designed to meet these needs and explores its unique features, diagrams, and custom libraries. The CubeSat Reference
Architecture was validated by relevant course instructors and is being used by a cohort of students in the Spacecraft
Design Sequence at AFIT.

Reference Architecture, CubeSat, MBSE

U U U U 108

Dr. David R. Jacques, AFIT/ENV

(937) 255-3636, x3329; david.jacques@afit.edu

	A Reference Architecture for Rapid CubeSat Development
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	General Issue
	Problem Statement
	Scope
	Research Objectives and Questions
	Assumptions and Limitations
	Approach
	Preview

	Literature Review
	Overview
	CubeSats
	Model Based Systems Engineering
	Reference Architectures
	Existing Work
	Validation Tools
	Document Generators
	Summary

	Methodology
	Overview
	Status Quo
	Developing the Reference Architecture
	Instructor Feedback
	Tool Validation
	Summary

	Analysis and Results
	Overview
	Organization
	Guidance
	Requirements
	Structure
	Behavior
	Analysis
	Component Library
	Document Generators
	Validation of Model
	Summary

	Conclusion
	Overview
	Significance of Research
	Lessons Learned
	Future Work
	Final Thoughts

	Bibliography

